Roll No .....

## MA-220(CE)-CBCS

## **B.E., IV Semester**

Examination, June 2020

## **Choice Based Credit System (CBCS)**

## **Mathematics - III**

Time: Three Hours

Maximum Marks: 60

- *Note:* i) Attempt any five questions.
  - ii) All questions carry equal marks.
- 1. a) Find a series of sines and cosines of multiples of x, which will represent  $x + x^2$  in the internal  $-\pi < x < \pi$  Hence show that  $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{3^2$ 
  - b) Expand  $f(x) = \pi x x^2$ ,  $0 < x < \pi$  in a half-range sine series.
- series.

  2. a) Find the Fourier transform of  $f(x) = \begin{cases} x, |x| \le a \\ 0, |x| > a \end{cases}$ 
  - b) Find the Fourier consine transform of

$$f(x) = \begin{cases} \cos x, & 0 < x < 9 \\ 0, & x > 9 \end{cases}$$

- 3. a) Find  $L\left\{\frac{\sin t}{t}\right\}$ 
  - b) Prove that  $L\left\{\frac{\cos\sqrt{t}}{\sqrt{t}}\right\} = \frac{\pi}{s}e^{-\frac{1}{4}s}$

MA-220(CE)-CBCS

PTO

4. a) Find 
$$L^{-1} \left\{ \frac{s+1}{s^2 + 6s + 25} \right\}$$

- b) Solve y'' 2y' + 2y = 0, given y(0) = y'(1) = 1(By Laplace transform method)
- 5. a) Use Cauchy-Riemann equation to find when  $u = 3x^2y - y^3.$ 
  - b) Evaluate the integral  $\int_{0}^{1+i} z^2 dz$
- Evaluate the following integral using Cauchy's integral 6. a) formula:

$$\int \frac{\left(4-32\right)}{z(z-1)(z-2)} dz$$

- b) Show that  $\int \frac{1}{z(z-1)} \frac{dz}{(z-2)} dz$   $\int \frac{1}{z(z-1)} \frac{dz}{(z-2)} dz$   $\int \frac{dz}{z(z-1)} dz$
- 7. a) Find real root of the equation  $f(x) = x^3 4x 9 = 0$ , using bisection method in four stages.
  - b) Apply False position method to solve the equation  $3x - \cos x - 1 = 0$
- 8. a) By using Newton-Raphson method find the root of  $x^4 - x - 10 = 0$ , which is nearer to 2, correct to three places of decimal.
  - b) Find a quadratic factor of the polynomial  $x^4 + 5x^3 + 3x^2 - 5x - 9 = 0$ , starting with  $p_0 = 3$ ,  $q_0 = -5$ , by using Bairstow's method.

\*\*\*\*\*

MA-220(CE)-CBCS